Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

СОГЛАСОВАНО	УТВЕРЖДАЮ			
Заведующий кафедрой	Заведующий кафедрой			
Кафедра электрификации горно-	Кафедра электрификации горно-			
металлургического производства	металлургического производства			
(ЭΓΜΠ_ΠΦ)	(ЭГМП_ПФ)			
наименование кафедры	наименование кафедры			
	Куликовский В.С.			
подпись, инициалы, фамилия	подпись, инициалы, фамилия			
«»20г.	«» 20_г.			
институт, реализующий ОП ВО	институт, реализующий дисциплину			
РАБОЧАЯ ПРОГРАМ	ИМА ДИСЦИПЛИНЫ А. МАТИНИ			

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ АВТОМАТИКА МАШИН И УСТАНОВОК ГОРНОГО ПРОИЗВОДСТВА

Дисциплина Б1.В.06 Авто производств	оматика машин и установок горного а
Направление подготовки /	21.05.04 Горное дело специализация
специальность	21.05.04.00.10 Электрификация и
Направленность (профиль)	автоматизания гоппого ппоизволетва
` • • ·	
Форма обучения	заочная
Год набора	2015

Красноярск 2021

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ

составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по укрупненной группе

210000 «ПРИКЛАДНАЯ ГЕОЛОГИЯ, ГОРНОЕ ДЕЛО, НЕФТЕГАЗОВОЕ ДЕЛО И ГЕОДЕЗИЯ»

Направление подготовки /специальность (профиль/специализация)

Специальность 21.05.04 Горное дело специализация 21.05.04.00.10 Электрификация и автоматизация горного производства

Программу составили

к.т.н., Доцент, Кузьмин Р.С.

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Горнодобывающее предприятие как объект управления имеет следующие

особенности:

непрерывное территориальное развитие производства, рассредоточен-ность и подвижность производственных объектов, нестационарность рабочих мест;

дискретность и непрерывность многооперационных и взаимосвязанных технологических процессов;

случайный характер влияния природных условий на все производственные процессы, связанные с выемкой и транспортировкой полезного ископаемого, с поведением подготовительных выработок, обеспечением проветривания, откачки воды и т.д.;

инерционность основных технологических и производственных процес-сов;

необходимость непрерывного согласования работы различных по назначению и характеру производственных объектов.

Создание и внедрение в горное производство новых мощных и энергоемких горнодобывающих машин, комплексов непрерывного действия ставит задачу обеспечения дистанционного или централизованного управления горным оборудование с автоматическим контролем его работы.

Автоматика необходима в силу существующих на горных предприятиях тенденций:

- Возрастание сложности задач управления как горным предприятием целом, так отдельными технологическими В И процессами. Это связано, прежде всего, cростом масштабов производства, рассредоточенно-стью его И нестационарностью большинства технологических процессов.
- 2. Возрастание требований к надежности отдельных технологических агрегатов и технологических систем.

Главным является создание типовых систем управления, допускающие контролируемых параметров введение новых И управляющих воздействий, нечувствительных изменениям К технологической схемы.

Данная дисциплина синтезирует связи между общими теоретическими знаниями и навыками, приобретенными студентом при изучении дисциплин естественнонаучного цикла, и специальной подготовкой в области горного производства. Дисциплина является

частью плана подготовки специалистов.

Основной целью изучения дисциплины является формирование у студентов общего представления об автоматики горного производства, а также обучение студентов методологии исследования, анализа и установления взаимосвязей между машинами и устройствами связанными единым технологическим процессом.

соответствии с общими целями ООП изучение дисциплины направлено на формирование общепрофессиональной инженерной культуры, позволяющей применять полученные знания и умения во всех видах профессиональной деятельности, в том числе производственно-технологической, проектной научно-И исследовательской.

1.2 Задачи изучения дисциплины

Специалист на основе учебной дисциплины должен решать следующие профессиональные задачи:

осуществлять техническое руководство по обеспечению функционирования оборудования и технических систем горного производства;

разрабатывать, согласовывать и утверждать нормативные документы, по эксплуатацией оборудования, обеспечивать выполнение требований технической документации на производство работ, действующих норм, правил и стандартов;

разрабатывать и реализовывать мероприятия по совершенствованию и повышению технического уровня горного производства, обеспечению конку-рентоспособности организации в современных экономических условиях;

создавать и (или) эксплуатировать оборудование и технические системы обеспечения эффективной и безопасной реализации технологических процессов при производстве работ по эксплуатационной разведке, добыче и переработке твердых полезных ископаемых, а также при строительстве и эксплуатации подземных объектов различного назначения;

проводить технико-экономический анализ. комплексно обосновывать принимаемые и реализуемые оперативные решения, повышения эффективности изыскивать возможности производства, содействовать обеспечению подразделений предприятия необходимыми техническими данными, норма-тивными документами, материалами, оборудованием;

осуществлять работу по совершенствованию производственной деятельности, разработку проектов и программ развития предприятия (подразделений предприятия);

анализировать процессы горного, горно-строительного производств и комплексы используемого оборудования как объекты управления;

планировать и выполнять теоретические, экспериментальные и лабора-торные исследования, обрабатывать полученные результаты с использовани-ем современных информационных технологий;

осуществлять патентный поиск, изучать научно-техническую информа-цию, отечественный и зарубежный опыт по тематике исследований;

использовать прогнозирования методы И оценки уровня промышленной безопасности на производственных объектах, обосновывать действенные снижению И реализовывать меры ПО производственного травматизма;

проводить технико-экономическую оценку, эффективности использова-ния электротехнического оборудования;

разрабатывать необходимую техническую документацию в составе творческих коллективов и самостоятельно;

осуществлять проектирование электрификации предприятий с использованием современных систем автоматизированного проектирования.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

ПК-2:владением методами рационального и комплексного освоения георесурсного потенциала недр

ПК-8:готовностью принимать участие во внедрении автоматизированных систем управления производством

ПСК-10.1:способностью и готовностью создавать и эксплуатировать электротехнические системы горных предприятий, включающие в себя комплектное электрооборудование закрытого и рудничного исполнения, электрические сети открытых и подземных горных и горно-строительных работ, в том числе в условиях чрезвычайных ситуаций

ПСК-10.2:способностью и готовностью создавать и эксплуатировать системы защиты и автоматики с искробезопасными цепями управления, а также комплексы обеспечения электробезопасности и безопасной эксплуатации технологических установок

ПСК-10.3:способностью создавать и эксплуатировать электромеханические комплексы машин и оборудования горных предприятий, включая электроприводы, преобразовательные устройства, в том числе закрытого и

рудничного взрывозащищенного исполнения, и их системы управления

ПСК-10.4: способностью и готовностью создавать и эксплуатировать системы автоматизации технологических процессов, машин и установок горного производства

1.4 Место дисциплины (модуля) в структуре образовательной программы

Для изучения данной дисциплины студентам необходимо усвоить основные дисциплины и их разделы (темы), перечисленные ниже.

- 1. Электрические измерения.
- 2. Метрология, стандартизация и сертификация в горном деле.
 - 3. Теория автоматического управления.
 - 4. Преобразовательная техника.
- 5. Микропроцессорные средства в электроприводах и технологических комплексах.
 - 6. Элементы систем автоматики.
 - 7. Горные машины.
 - 8. Экономика и менеджмент горного производства.
 - 1.5 Особенности реализации дисциплины Язык реализации дисциплины Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

		Cen	иестр
Вид учебной работы	Всего, зачетных единиц (акад.час)	7	8
Общая трудоемкость дисциплины	6 (216)	2 (72)	4 (144)
Контактная работа с преподавателем:	0,78 (28)	0,31 (11)	0,47 (17)
занятия лекционного типа	0,44 (16)	0,19 (7)	0,25 (9)
занятия семинарского типа			
в том числе: семинары			
практические занятия			
практикумы			
лабораторные работы	0,33 (12)	0,11 (4)	0,22 (8)
другие виды контактной работы			
в том числе: групповые консультации			
индивидуальные консультации			
иная внеаудиторная контактная работа:			
групповые занятия			
индивидуальные занятия			
Самостоятельная работа обучающихся:	4,86 (175)	1,58 (57)	3,28 (118)
изучение теоретического курса (TO)			
расчетно-графические задания, задачи (РГЗ)			
реферат, эссе (Р)			
курсовое проектирование (КП)	Да	Нет	Да
курсовая работа (КР)	Нет	Нет	Нет
Промежуточная аттестация (Зачёт) (Экзамен)	0,36 (13)	0,11 (4)	0,25 (9)

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционн ого типа (акад.час)	Занятия семинарского типа Семинар Лаборато рные практиче работы и/или Практику (акад.час) Мы (акад.час)		Самостоя тельная работа, (акад.час)	Формируемые компетенции
1	2	2	1	5	6	7
1	АСУ горнотранспортн ыми процессами	7	0	4	57	ПК-8 ПСК- 10.1 ПСК-10.2 ПСК-10.3 ПСК-10.4
2	Автоматизация стационарных установок	9	0	8	118	ПК-8 ПСК- 10.1 ПСК-10.2 ПСК-10.3 ПСК-10.4
Всего		16	0	12	175	

3.2 Занятия лекционного типа

			Объем в акад.часах		
№ п/п	№ раздела дисциплин ы	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
1	1	Установочная лекция	1	0	0
2	1	Автоматизация процесса подготовки горных пород к выемке	2	0	0
3	1	Автоматизация процесса выемки и погрузки горных пород	2	0	0
4	1	Автоматизация горнотранспортных процессов	2	0	0
5	2	Автоматизация процесса проветривания	3	0	0

6	2	Автоматизация водоотливных установок	4	0	0
7	2	Автоматизация процесса получения сжатого воздуха	2	0	0
Разго			16	0	0

3.3 Занятия семинарского типа

	No			Объем в акад. час	ax
№ π/π	№ раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме
Dage	2				1 1

3.4 Лабораторные занятия

		ораторные занятия	Объем в акад. часах			
№ п/п	№ раздела дисципл ины	Наименование занятий	Всего	в том числе, в инновационной форме	в том числе, в электронной форме	
1	1	Автоматизация режимов работы экскаваторов- драглайнов.	оты экскаваторов- 1 0		0	
2	1	Автоматизация режимов работы экскаваторов- 1 0 мехлопат.		0		
3	1	Автоматизированное управление конвейерными линиями.	1	0	0	
4	1	Средства автоматизации 1 конвейерной линией		0	0	
5	2	Автоматизация насосных установок.	2	0	0	
6	2	Автоматизация вентиляторных установок.	2	0	0	
7	2	Автоматизация калориферных установок	2	0	0	
8	2	Средства контроля положения и уровня	2	0	0	
Dagre			12	0	0	

4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

	Авторы,	Заглавие	Издательство,
	составители		год
Л1.1	Заварыкин Б. С.,	Автоматика машин и установок горного	Красноярск:
	Гаврилова Е. В.,	производства: лабораторный практикум:	СФУ, 2013
	Павлов В. В.,	учеб. пособие по направ. подг. "Горное	
	Ковалева О. А.	дело", спец. "Электрификация и	
		автоматизация горного производства"	
Л1.2	Заварыкин Б. С.,	Автоматизация горно-металлургического	Красноярск:
	Гаврилова Е. В.	производства: учебметод. пособие для	СФУ, 2012
		курс. и дипломного проектирования для	
		студентов спец. 140604	

5 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

		6.1. Основная литература	
	Авторы, составители	Заглавие	Издательство, год
Л1.1	Шандров Б.В., Чудаков А.Д.	Технические средства автоматизации: учебник.; допущено МО РФ	М.: Академия, 2007
Л1.2	Водовозов А.М.	Элементы систем автоматики: учеб. пособие для студентов высш. учеб. заведений.; допущено УМО по образованию в области энергетики и электротехники	М.: Академия, 2008
		6.2. Дополнительная литература	
	Авторы, составители	Заглавие	Издательство, год
Л2.1	Акутин Г. К., Гулько Л. В., Щербина Ю. М., Яснопольский В. В.	Автоматизация технологических процессов на карьерах: монография	Москва: Недра, 1977
Л2.2	Мелькумов Л. Г., Камынин Ю. Н., Диденко К. И., Розен Ю. Н., Камынин Ю. Н., Мелькумов Л. Г.	Системы и устройства автоматики для горных предприятий на основе микроэлектроники и микропроцессорной техники	Москва: Недра, 1992

		6.3. Методические разработки	
	Авторы,	Заглавие	Издательство,
	составители		год
Л3.1	Заварыкин Б. С., Гаврилова Е. В., Павлов В. В., Ковалева О. А.	Автоматика машин и установок горного производства: лабораторный практикум: учеб. пособие по направ. подг. "Горное дело", спец. "Электрификация и автоматизация горного производства"	Красноярск: СФУ, 2013
Л3.2	Заварыкин Б. С., Гаврилова Е. В.	Автоматизация горно-металлургического производства: учебметод. пособие для курс. и дипломного проектирования для студентов спец. 140604	Красноярск: СФУ, 2012

8 Методические указания для обучающихся по освоению дисциплины (модуля)

Методические указания по разработке основных вопросов автоматики предприятия

Основные положения

Выбор системы автоматического управления объектом следует начинать с рассмотрения требований, предъявляемых к объекту с точки зрения его автоматизации. Затем следует решить вопрос о выборе регулируемого параметра установки. В зависимости от типа принятого в проекте оборудования регулируемый параметр может быть различным.

Необходимо также решать вопрос о возможности автоматизации кон-кретного оборудования. Необходимо далее решить вопрос о датчиках контролирующих технологический процесс, являющихся источниками информации о ходе технологического процесса. Следует ориентироваться на новейшие стандартные датчики.

Алгоритмы управления

В соответствии с требованиями, предъявляемым к системе автоматиза-ции технологического процесса, разрабатывается алгоритм управления.

Он может быть представлен в математической форме или в виде графа.

Функциональная и структурная схемы

Пояснения действия аппаратуры автоматизации удобно выполнять с помощью функциональной схемы, а динамические

свойства отдельных элементов — с помощью структурной схемы. По согласованию с руководителем проекта и консультантом допускается упрощать в некоторой степени структуру отдельных элементов схемы.

Расчет надежности системы

По указанию руководителя проекта или консультанта в зависимости от сложности системы автоматизации объекта выполняется ориентировочный расчет надежности для системы в целом или отдельных самостоятельных частей ее. Расчет выполняется по обычной методике и сводится в таблицу.

Основная задача курсового проектирования — проектирование автоматизированной системы управления технологическим процессом (технологическим комплексом, промышленной установкой).

Рекомендуется решать задачу следующей ЭТУ последовательности: анализ технологического процесса как объекта управления, технико-экономическое обоснование предлагаемой АСУ-ТП ожидаемый экономический эффект; выбор средств автоматизации для локальных управления и контроля; определение и расчёт структуры и параметров регулятора для локальной системы управления.

Анализ технологического процесса как объекта управления

Исходными данными для выполнения такого анализа являются инструкции технологические И характеристиками оборудования и трубопроводов, а также результаты НИР и ОКР или результаты испытаний процессов – Необходимо использовать также техническую документацию типовым проектам И проектным решениям. C ИХ устанавливается перечень контролируемых и регулируемых параметров с необходимыми требованиями и характеристиками (номинальное диапазон изменения, метрологические характеристики, особые условия работы и т.д.). На этой же стадии определяется принцип построения АСУ ТП, её иерархия, структура, функции, алгоритмы и ожидаемый экономический эффект.

Для объектов со сложными взаимосвязанными технологическими про-цессами проектируются АСУ ТП, работающие в режимах супервизорного и непосредственного цифрового управления. Законы управления в этом случае формируются на промышленных ЭВМ и микроконтроллерах.

Выбор средств автоматизации для локальных систем управления и контроля

При разработке проекта автоматизации в первую очередь
необходимо решить следующие задачи:
□ с каких мест те или иные участки объекта будут
управляться, где будут размещаться пункты управления, операторские
помещения, какова должна быть взаимосвязь между ними, т.е.
необходимо решить вопросы выбора структуры управления (под
структурой управления понимается совокупность частей
автоматической системы, на которые она может быть разделена по
определённому признаку, а также пути передачи информационных и
управляющих потоков);
получение информации о состоянии технологического
оборудования и непосредственное воздействие на технологический
процесс для управления им;
□ стабилизация технологических параметров, контроль и
регистрация технологических параметров процесса.
В результате проведённого анализа выбираются методы
измерения тех-нологических параметров, основные технические
средства автоматизации, привода исполнительных механизмов
регулирующих и запорных органов, управляемых автоматически или
дистанционно; определяется размещение технических средств
автоматизации на щитах, пультах и технологическом оборудовании.
Технические средства автоматизации выбирают, исходя из
следующих условий:
□ производства (пожаро- и взрывобезопасность,
вапылённость, агрессивность и токсичность среды);
□ параметров измеряемой среды;
□ расстояний, допускаемых от датчиков и исполнительных
механиз-мов до регулирующих устройств;
□ требований к точности и быстродействию работы системы.
Количество приборов, аппаратуры сигнализации и управления,
устанавливаемых на оперативных щитах и пультах, должно быть
минимальным и достаточным.
Предлагаемые функциональные схемы контуров контроля и
CHARLES TO TAKE A CAMPAGET POR CAMPAGET HORSE TO THE AVERAGE AND THE

предлагаемые функциональные схемы контуров контроля и управления должны сохранять возможность наращивания функций управления и строиться на базе технических средств автоматизации Государственной Системы Приборов и унифицированных комплексов.

Изображение средств измерения и автоматизации на функциональных схемах производится в соответствии с ГОСТ 21.404-85.

На основании функциональных схем разрабатываются принципиальные электрические схемы, которые также выполняют в соответствии с требованиями государственных стандартов.

Определение и расчёт структуры и параметров регулятора для локальной системы управления

В неголог жернене неебующим опропения и жернировати
В данном разделе необходимо определить и реализовать
динамические характеристики системы автоматического
регулирования, наилучшим образом удовлетворяющих заданным
показателям качества. Для решения данной задачи необходимо:
□ синтезировать математическую модель объекта управления
в виде передаточной функции и определить её параметры аналитически
или экспериментально на реальном объекте регулирования;
Выбрать показатели и критерии качества процессов
регулирова-ния;
пределить структуру и параметры регулятора;
□ снять кривые переходных процессов системы
автоматического регулирования, определить прямые и косвенные
показатели качества управления и сравнить их с заданными.
Под объектом управления обычно понимают технологический
процесс, отдельный механизм или агрегат, двигатели постоянного и
переменного тока. Математическое описание объекта управления
получают аналитически или по экспериментальным данным.
Динамические свойства промышленных объектов управления
(печи спе-кания, сгустители и т.д.) обычно задаются в виде:
передаточной функции инерционного звена первого
порядка с за-паздыванием;
передаточной функции инерционного звена второго
порядка с за-паздыванием;
передаточной функции интегрирующего звена с
запаздыванием,
Требования к качеству процесса управления могут быть
различными и определяются показателями качества: погрешность регулирования, время регулирования,
перерегулирование, динамический коэффициент регулирования, запас
устойчивости по фазе и амплитуде, колебательность, максимальное
ускорение (прямые и косвенные показатели качества, определяются по
кривой переходного процесса и частотным характеристикам системы);
□ интегральные показатели качества (минимум
среднеквадратического отклонения, улучшенные интегральные оценки
качества, интегральный критерий качества от квадратичных форм,
максимальное быстродействие, минимум расхода энергии на

управление, компромиссное управление Автухова и т.д.);

□ критерии модульного, симметричного и компромиссного оптиму-мов.

В зависимости от критериев и показателей качества, а также адекватности математического описания объекта управления реальному процессу, выбирают структуру и настроечные параметры регуляторов. В [7] приведены передаточные функции оптимальных регуляторов, а также соответствующие каждому алгоритму управления частные случаи передаточной функции объекта управления и формулы для определения параметров оптимальной динамической настройки типовых регуляторов (П, И, ПИ, ПД, ПИД). Для объектов с большим запаздыванием рекомендуется применять регуляторы Смита и Ресвика.

Для систем управления электроприводов рекомендуется применять методы корневого годографа и модального управления, системы скалярного и векторного управления по критериям модульного, симметричного и компромиссного оптимумов.

Если объект управления сложный, отсутствует адекватное математиче-ское описание, то рекомендуется выбирать управление с помощью адаптивных регуляторов, в области нечётких множеств, с помощью искусственных нейронных сетей (фаззи - регуляторы и нейронные регуляторы) и экспертных систем.

Систему автоматического регулирования необходимо проверить путём моделирования в среде MATLAB и с помощью пакета IPC-CAD , построив все временные и частотные характеристики. По результатам моделирования необходимо сделать вывод о соответствии заданных и полученных (на модели) показателях качества.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

9.1 Перечень необходимого программного обеспечения

9.1.1	MatLAB
9.1.2	MS office

9.2 Перечень необходимых информационных справочных систем

10 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Помещения для проведения лекционных занятий укомплектованы необходимой специализированной учебной мебелью и техническими средствами для представления учебной информации студентам. Лабораторные работы проводятся на специализированных стендах с использованием ПК с установленным необходимым ПО.